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Oscillation of Solutions of Impulsive Nonlinear 
Parabolic Differential-Difference Equations 
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Sufficient conditions for oscillation of the solutions of impulsive nonlinear 
parabolic differential-difference equations are obtained. 

1. INTRODUCTION 

During the period 1970-1980 many results in the oscillation theory for 
partial differential equations (PDE) were obtained. After 1980 the investiga- 
tions in this theory were extended to new classes of equations: PDE with 
deviating arguments and partial integrodifferential equations (Yoshida, 1979, 
1985, 1986, 1987, 1992a, b). 

The theory of impulsive PDE is a new branch of the theory of PDE. 
Impulsive PDE have been objects of intensive investigation since 1991 and 
many papers have been devoted to the fundamental and qualitative theory 
for impulsive PDE, impulsive population dynamics, and numerical methods 
for impulsive PDE (Ahmad and Rama Mohana Rao, n.d.; Bainov et al.,  1994, 
1995a-c; Byszewski, 1992, 1993; Gupta, 1994). 

In the present paper sufficient conditions are obtained such that every 
solution of impulsive nonlinear parabolic differential-difference equations 
satisfying certain boundary conditions is oscillating. 

2. PRELIMINARY NOTES 

Let ~ C R ~ be a bounded domain with a smooth boundary 01"~ and 
= f~ tA 01q. Suppose that 0 = to < t~ < t2 < "'" < tk < "'" are given 
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numbers and tk+t = tk + ~r, k = 0, 1 . . . . .  where o- = const > 0, and I is a 
fixed natural number. 

Define Jimp = {tk}k~, R+ = [0, +~) ,  E ~ = [-or ,  0] • ~ ,  E = (0, + ~ )  
X l-l, E* = R+ X ~ ,  Elm p = {(t, x) ~ E: t ~ Jimp}, El*rap = {(t, x) ~ E*: t 

Yimp}. 
Let C~mp [E ~ U E*, R] be the class of  all functions u: E ~ U E* ~ R 

such that: 

(i) The restriction of  u to the set E ~ tO E * \ E ~ p  is a continuous function. 
(ii) For each (t, x) E Ei*~p there exist the limits 

lim u(q, s) = u( t- ,  x), lim u(q, s) = u(t § x) 
(q,s)--->(t,x) (q,s)-..-~(tdr) 

q<t  q>t  

:g and u(t, x) = u(t +, x) for (t, x) ~ Eim p. 

The class of  functions Cimp[E*, R] is defined analogously, with E* 
written instead of  E ~ tO E* in the above definition. 

Consider the nonlinear parabolic differential-difference equation 

ut (t, x) - a(t)Au(t,  x) + p(t,  x ) f ( u ( t  - or, x))  = O, 

(t, x) E E\Eimp 

subject to the impulsive condition 

u(t, x) - u( t - ,  x) = g(t, x, u( t - ,  x)), 

and the boundary conditions 

Ou 
0-n (t, x) + "~/(t, x)u(.t, x) = 0, 

(1) 

(t, X) E El*rap (2) 

(t, x) E (R+\Jimp) • al~ (3) 

or 

U(t, X) = 0, (t, X) ~ (R+\Jimp) X a~'~ (4) 

The functions a: R+ --) R, p: E* ---) R, f :  R ~ R, g: E~mp X R ---) R, 
~/: R+ X al~ ---) R are given. 

Definition 1. The  function u: E ~ U E* ---) R is called a solution of  the 
problem (1)-(3)  [(1), (2), (4)] if: 

(i) u ~ Cimp[E 0 U E*, R], there exist the derivatives ut(t, x), Uxixi(t, x), 
i = 1, . . . ,  n, for (t, x) ~ E\Eim p and u satisfies (1) on E\Eim p. 

(ii) u satisfies (2), (3) [(2), (4)]. 

Definition 2. The  nonzero solution u(t, x) of  equation (1) is said to be 
nonoscillating if there exists a number ~ ----- 0 such that u(t, x) has a constant 
sign for (t, x) ~ [1~, + ~ )  x 1~. Otherwise, the solution is said to oscillate. 
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For the function sign we adopt the following definition: 

0 if x > O  
s i g n x =  if x = O  

1 if x < O  

Introduce the following assumptions: 

HI .  a E Cimp[R+, R+]. 
H2. p ~ Cimp[E* , R+]. 
H3. g E C(E~p X R, R). 
H4. ~/ e Cimp[R+ X 0~'~, RE-]. 
H 5 . f  e C(R, R) , f (u )  = - f ( - u )  for u >-- 0 , f i s  a positive and convex 

function in the interval (0, +oo). 

In the sequel the following notations will be used: 

P(t) = min{p(t, x): x E 1~} 

V(t) = [fl u(t, x) dx(I f  dx) -1 

3. MAIN RESULTS 

We give sufficient conditions for the oscillation of  the solutions of 
problem (1)-(3). 

Lemma 1. Let the following conditions hold: 

1. Assumptions H 1 - H 5  are fulfilled. 
2. u ~ C2(E\Eimp) f') Cl(E*\E~mp) is a positive solution o.f the problem 

i l ) - (3 )  in the domain E. 
3. g(tk, X, 6) <-- Lkf;, k = 1, 2 . . . . .  x E ~ ,  ~ ~ 1L, Lk >-- 0 are constants. 

Then the function V(t) satisfies for t --> or the impulsive differential 
inequality 

V'(t) + e( t) f (V(t  - tr))  <-- O, t ~ tk (5) 

V(tk) <-- (1 + Lk)V(t-~) (6) 

Proof. Let t --> tr. Integrating equation (1) with respect to x over the 
domain 1), we obtain 

Io ~ u(t, x) dx - a(t) Au(t, x) dx 

+ ~ p(t, x)f(u(t  - ~, x)) dx = O, t ~ t~ (7) 
Ja 
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From the Green formula and H4 it follows that 

fa Au(t' x) dr = foa OnO--" dS = - f o o  ~t(t, x)u(t, x) dS <-- O, t q: t, (8) 

Moreover, for t ~ tk, the Jensen inequality enables us to get 

fa p(t, x)f(u(t - x)) dr 

>- P(t) fo f (u( t  - ~r, x)) dr 

fo 
In virtue of  (8) and (9) we obtain from (7) that 

V'(t) + P(t)f(V(t - tr)) <- O, 

For t = tk we have that 

that is, 

t 4 : t k  

V(tk) -- V(t~) <-- L,  dr u(t~, x) d r  = LkV(t~) 

V(t,) <- (I + Lk)V(tD �9 

Definition 3. The solution 

V E Cimp[[-o"  , O] I, lJ R+, R] f l  C I (tk, tk+l), R 

of  the differential inequality (5), (6) is called eventually positive (negative) 
if there exists a number t* -> 0 such that V(t) > 0 IV(t) < 0] for t -> t*. 

Theorem 1. Let the following conditions hold: 

1. Assumptions H 1 - H 5  are fulfilled. 
2. g(tk, X, 6) -< Lk~, k = 1, 2 . . . . .  x e f~, ~ e R+, Lk --> 0 are constants 

and g(t,, x, 6) = -g(tk,  x, -6) .  
3. Each eventually positive solution of  the differential inequality (5), 

(6) tends to zero as t ~ oo. 
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Then each nonzero solution u e C2(E\Eimp) n C t(E* \E~p) of problem 
(1)-(3)  either oscillates in the domain E, or 

lim ( u(t, x) dx = 0 
l---)oa Jn 

Proof Suppose the conclusion of the theorem is not true, i.e., u(t, x) is 
a nonzero solution of the problem (1)-(3) which is of  the class C2(E\Eimp) 
n Ct(E*\E~p), it has a constant sign in the domain E~ = [IX, +oo) • l l ,  
p~ -> 0, and 

nu ( t , x )  dx--l-)O as t --> oo 

Without loss of  generality we may assume that u(t, x) > 0 for (t, x) e 
Er Then it follows from Lemma 1 that the function V(t) is a positive solution 
of the differential inequality (5), (6) for t >--- Ix + 0. and V(t) 4-> 0 as t --> oo, 
which contradicts condition 3 of  the theorem. �9 

Theorem 2. Let the following conditions hold: 

1. P �9 Cimp[R+, R.+], f~* P('r) d'r = +oo for each t* --> 0. 
2. ]~=~ Lk < +oo, Lk --> 0, k = 1, 2 . . . . .  are constants. 
3. f (u)  >-- Mu, u >-- 0, M > 0 is a constant. 

Then each eventually positive solution of  the differential inequality (5), 
(6) tends to zero as t --> oo. 

Proof Let V(t) be an eventually positive solution of the differential 
inequality (5), (6), that is, there exists a point t* >-- 0 such that V(t) > 0 for 
t>-- t*. Then for t >-- t* + or 

V'(t) + MP(t)V(t - 0.) <-- 0, t 4: tk 

V(tk) <- (1 -I- Lk)V(t~) 

Since V'(t) <-- 0 for t --> t* + (r, t 4: tk, we obtain for each ?~ >- t* + 0. that 

V(t) -- 1-] (1 + Lk)V(?,) 
rl<tk<--t 

Thus for t --> t* + 20- we get the estimate 

V(t) <-- I--[ (1 + Lk)V(t - 0.) 
t--ff<tk<t 

and consequently, 

V'(t) + MP(t) V(t) <- 0 
I-i (1 + Lk) 

t--~<tk~t 
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for t ~ tk, t --> t* + 20". Direct calculation gives us 

V(t) <-- V(t* + 20") I-[ (1 + Lk)exp - M  
t*+ 2tr<tk<--t *+2o" 

P('r) dr) 
1-[ (1 + Lk) 

T--tY<lk--~T 

(10) 

The estimate (10) and the fact that V(t) is eventually positive imply that 
lim/__~ V(t) = O. �9 

Corollary 1. Let the following conditions hold: 

1. Assumptions H1-H5 are fulfilled. 
2. g(tk, X, f~) <-- Lkl~, k = 1, 2 . . . . .  x E l-l, f~ ~ P,+, Lk ~ 0 are constants 

such that Y-,k~=l Lk < +oo and g(tk, x, 0 = - g ( t k ,  x, - 0 .  
3. f ~  P(x) dx = +oo for each t* -> 0. 
4. f ( u )  >-- Mu for u --> 0, M > 0 is a constant. 

Then each nonzero solution u ~ C2(E\Eimp) f'l Cl(E*\E~mp) of problem 
(1)-(3) either oscillates in the domain E, or 

lim ( u(t, x) dx = 0 
t......~o Ja 

Corollary 1 follows from Theorems 1 and 2. 
Now we give sufficient conditions for oscillation of the solutions of the 

problem (1), (2), (4). 
Consider the following Dirichlet problem: 

Ato + ~tto = 0 in. I~ 

toloa = 0 (11 )  

where et = const. It is known that the smallest eigenvalue or0 of the problem 
(11) is positive and the corresponding eigenfunction to0(x) > 0 for x E l-l. 
Without loss of generality we may assume that too is normalized, i.e., f a  
t00(x) dx = 1. 

Introduce the notation 

W(t) = fa  u(t, x)too(X) dx  

Lemma 2. Let the following conditions hold: 

1. Assumptions H1-H3,  H5 are fulfilled. 
2. u ~ C2(E\Eimp) tq C t ( E * \ E ~ p )  is a positive solution of the problem 

(1), (2), (4) in the domain E. 
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3. g(tk, x, 6) <- Lk~, k = 1, 2 . . . . .  x ~ ~ ,  ~ E R+, Lk >-- 0 are constants. 

Then the function W(t) satisfies for t --> tr the impulsive differential 
inequality 

W'(t) + otoa(t)W(t) + P(t)f(W(t - tr)) <-- O, t 4: tk (12) 

W(tk) <-- (1 + Lk)W(t;) (13) 

Proof Let t ----- tr. We multiply the both sides of equation (1) by the 
eigenfunction q~o(X), and integrating with respect to x over l-l, we obtain 

d u(t, x)q~o(X) dx - a(t) Ia Au(t, x)q~o(X) dx 

+ In p(t, x)f(u(t - ~, x))q~o(X) dx = O, t q: tk (14) 

From the Green formula it follows that 

In AU(t, x)q~o(x) dX = fn U(t, x)Atpo(x) dx 

= - a 0  fo u(t, x)q~o(X) dx = -a0W(t) ,  

where Oto > 0 is the smallest eigenvalue of the problem (11). 
Moreover, from the Jensen inequality, we have 

In P(t, x)f(u(t - x) )q~o(X) dx i f ,  

>- P(t) In f(u(t - tr, x))q~o(X) dx 

>-P( t ) f ( f  n u ( t - t r ,  x)q~o(X)dx)=P(t) f(W(t- tr)) ,  

Making use of  (15) and (16), we obtain from (14) that 

W'(t) + etoa(t)W(t) + P(t)f(W(t - tr)) <- O, t 4: tk 

For t = tk we have that 

- W(t~) <-- Lk ~ U(tk, x)q~O(X) dx = LkW(t~) W(tk) 
Ja 

t 4: tk (15) 

t 4: tk (16) 
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that is, 

W(tk) < (1 + Lk)W(t-f) �9 

Analogously to Theorem 1, we can prove the following theorem. 

Theorem 3. Let the following conditions hold: 

1. Assumptions H l -H3,  H5 are fulfilled. 
2. g(tk, X, 6) <- Lk~, k = 1, 2 . . . . .  x e f l ,  ~ e R+, Lk > 0 are constants 

and g(tk, X, 6) = --g(tk, X, --6). 
3. Each eventually positive solution of the differential inequality 02) ,  

(13) tends to zero as t --~ oo. 

Then each nonzero solution u E C2(E\EImp) f-) C1(E*\E~mp) of problem 
(l), (2), (4) either oscillates in the domain E or 

lim f u(t, x)q~o(X) dr  = 0 
)n 

Theorem 4. Let the following conditions hold: 

1. Assumption H1 is satisfied. 
2. The conditions of Theorem 2 hold. 
Then each eventually positive solution of the differential inequality (12), 

(13) tends to zero as t --~ oo. 

The proof of Theorem 4 is analogous to the proof of Theorem 2. It is 
omitted here. 

Corollary 2. Let the conditions of Corollary 1 be fulfilled except for H4. 
Then each nonzero solution u E C2(E\gimp) 0 C~(E*\E~p) of problem 

(1), (2), (4) either oscillates in the domain E, or 

lim f u(t, x)q~o(X) dr  = 0 
)a  

Corollary 2 follows from Theorems 3 and 4. 
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